Dynamical Systems Analysis Using Differential Geometry

نویسندگان

  • Jean-Marc GINOUX
  • Bruno ROSSETTO
چکیده

This paper aims to analyze trajectories behavior and attractor structure of chaotic dynamical systems with the Differential Geometry and Mechanics formalism. Applied to slow-fast autonomous dynamical systems (S-FADS), this approach provides: on the one hand a kinematics interpretation of the trajectories motion, and on the other hand, a direct determination of the slow manifold equation. The attractivity of this manifold established with a new criterion makes it possible to ensure attractors stability. Then, a qualitative description of the geometrical structure of the attractor is presented. It consists in considering it as the deployment in the space phase of a special submanifold that is called singular manifold. The attractor can be obtained by integration of initial conditions taken on this singular manifold. Applications of this method are made for the following models: cubic-Chua, and Volterra-Gause. Introduction In the Mechanics formalism the solution of a dynamical system is considered as the coordinates of a moving point M at the instant t. Then, three kinematics variables are attached to this point which represents the “trajectory curve”: X(t) : parametric representation of chaotic orbit, V(t) : instantaneous velocity vector, γ(t) : instantaneous acceleration vector. The Differential Geometry allows to use the Frénet frame [2] which is moving with the “trajectory curve” and directed towards its motion, consists in, a unit tangent vector to the “trajectory curve”, a unit normal vector, directed towards the interior of the concavity of the curve and a unit binormal vector to the trajectory curve so that the trihedron ( ) , , τ β ν is direct (Cf. Fig.1.). Dynamical Systems Analysis Using Differential Geometry 2 Fig. 1. Frénet frame and osculating plane. In this moving frame the instantaneous acceleration vector may be decomposed in a tangential and normal component both depending on instantaneous velocity and acceleration vectors directions. γ.V V (1) γ V V τ

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Dynamical Systems in Cancer Therapy

In this paper, we have proposed and analyzed a mathematical model for the study of interaction between tumor cells and oncolytic viruses. The model is analyzed using stability theory of differential equations.

متن کامل

Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations

In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....

متن کامل

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion

In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005